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O(N): Prototypical Topological Field Theory
Non-linear σ-models with O(N) rotational symmetry

S =
1

2g2

∫
ddx (∂µ~e)

2

I Interacting theory through non-linear constraint

|~e|2 = 1 ⇔ ~e ∈ SN−1
I For d = N − 1 a topological charge can be defined

Q =
1

V (SN−1)

∫
dN−1x εµ1...µN−1

εi1...iN eiN
N−1∏
j=1

∂µje
ij

(Counting how many times the field winds around SN−1)
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O(N): Topological Sectors

I Q ∈ Z is always an integer

I Invariant under local changes of the field configuration

I Phase-space (and partition function) separable by charge

Z =
∑
Q

ZQ

I Defines a family of different θ-vacuua theories

S → S−iθQ, Z(θ) =
∑
Q

ZQ exp(iθQ) (0 ≤ θ < 2π)
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O(N): Wolff Clusters

I Lattice regularization ~ex, x ∈ X ⊂ RN−1

I Sampling partition function using non-local updates:

Clusters C ⊂ X of spins are reflected collectively and

independently along some direction ~n ∈ SN−1
I Boltzmann weight is distributed among all possible cluster

breakups {C}

exp(−S({~e})) =
∑
{C}

W ({~e}, {C})

(Wolff, 1989)
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Topological Charge of Clusters

I Charge Q can be obtained from piecewise differentiable

interpolated field

I Lattice field ~ex continously trivializable to ~ex = const.

I Solution: Zero weight for exceptional configurations

(where Q is discontinous)
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The Meron

Action barrier can be chosen such that the topological charge

factorizes

Q =
∑
C

QC

Cluster topological charge changes sign under reflection of the

cluster QC → −QC:

I Clusters carry half integer charge QC = ∆Q/2

I Clusters with QC = ±1
2

are called (anti-)merons

(Bietenholz et al., 1995)
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1d-O(2): A quantum mechanical example

I Corresponds to a particle on a circle S1

I Spectrum and transfer matrix known analytically

Ek =
I

2
k2, k ∈ Z

I Cluster decomposition analytically calculable

I Restricted cluster charges Q = 0,±1/2

4th AEC Plenary Meeting



O(N)-Models

Merons

Results

1d-O(2)

2d-O(3)

3d-O(4)

1d-O(2): Cluster Size Distribution

Neutral Q=0

Merons Q=±1/2
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2d-O(3): Asymptotic Free Field Theory

I Clusters have fractal-like

structures at all scales

I Cluster-size becomes cutoff

dependent

I Running coupling = no

self-similarity

I Clusters appear to have a fractal

dimension D ≈ 1.88

3 A new Bedtime Story about the BKT Transition ?

The cluster half vortex structure of a configuration of the 2d − O(2) model can be
visualized as a graph, where each node corresponds to a cluster and each half vortex to
an edge that links the nodes corresponding to the two clusters it is associated to. The
edges are directed and point from the node of the cluster they are associated to as a half
anti vortex to the node of the cluster they are assocaited to as a half vortex. Since each
cluster has an equal number of half vortices and half anti vortices, each node in the graph
has the same number of ingoing and outgoing edges. Two examples of configurations
alongside the respective half vortex graph are shown in figure 6. Clusters without half
vortices are omitted in the graphs.

Figure 6: Two example configurations and the corresponding half vortex graphs, one
from the broken phase (bottom) and one from the unbroken phase (top).In the
configuration images, half vortices are indicated by small triangles. Clusters
are colored with a random color map, smaller clusters in gray scale and larger
clusters in color. The colors of the nodes in the half vortex graphs corresponds
to the color of the corresponding clusters.

6

4th AEC Plenary Meeting



O(N)-Models

Merons

Results

1d-O(2)

2d-O(3)

3d-O(4)

2d-O(3): Cluster Size Distribution

Clusters as carriers of topological charge Wolfgang Bietenholz and João Pinto Barros

Here we are going to analyse this property further regarding the role of merons, which are
responsible for this divergence. Fig. 7 shows the cluster-size scaling of neutral cluster and merons,
which works with a fractal dimension of D = 1.88. We show data obtained on a square lattice
with the constraint action, in seven volumes, where the constraint angle δ is tuned such that L/ξ =

3.93(1). It ranges from δ = 0.4849π (L = 60) down to 0.4395π (L = 240), such that condition
(2.5) holds in each case.
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Figure 7: Cluster-size scaling for the 2d Heisenberg model with the constraint action on square lattices.
Scaling works for neutral clusters (left) and for merons (right) with the fractal dimension D' 1.88.

The bulk data scale accurately, but again the tiny clusters deviate from the smooth scaling
curve. In contrast to the quantum rotor, here this happens not only for the neutral clusters but also
for the merons. In these simulations, clusters with |Qcluster| ≥ 1 were rare, below 0.022%.

At this point, we switch to data obtained from a triangular lattice, with the constraint angle
δ = 2π/3, plus the term of the standard action, where β is tuned for the suitable correlation length.
Here we keep the ratio L/ξ = [xyz] fixed.

Fig. 8 shows the regime of very small neutral clusters and merons. The data for tiny clusters
are affected by lattice artifacts, but beyond that regime we observe power-laws, which allow for
a continuum extrapolation. We see that the abundance of neutral clusters diverges ∝ 1/s̄2, where
s̄ = s/ξ 1.88 is the rescaled cluster size, while the meron frequency diverges ∝ 1/s̄. Even without
considering clusters of higher charges, 〈Q2〉 therefore diverges logarithmically, according to the
integral over the meron density. The term χtξ 2 = 〈Q2〉(ξ/L)2 diverges in the same manner, since
we keep the ratio L/ξ constant. This observation reveals the reason for this notorious divergence.

The few cluster with higher topological charge enhance χt further. In Fig. 9 (left) we show
histograms for clusters with |Q| = 1: they are roughly compatible with the fractal dimension D =

1.88, but the convergence to a continuum scaling curve is clearly slower when the lattice becomes
finer. Here the suppression of tiny clusters is strong, but their number keeps increasing on finer
lattices, hence it is conceivable that also their density is UV divergent in the continuum limit.

We proceed to an alternative evaluation of the fractal dimension D in terms of the gyration
radius Rg [20]. Its definition and its relation to s and D are given by

R2
g =

1
2s2 ∑

x,y
(~ex−~ey)

2 , s ∝ RD
g , (5.1)
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2d-O(3): Cluster Size Distribution

Clusters as carriers of topological charge Wolfgang Bietenholz and João Pinto Barros

Here we are going to analyse this property further regarding the role of merons, which are
responsible for this divergence. Fig. 7 shows the cluster-size scaling of neutral cluster and merons,
which works with a fractal dimension of D = 1.88. We show data obtained on a square lattice
with the constraint action, in seven volumes, where the constraint angle δ is tuned such that L/ξ =

3.93(1). It ranges from δ = 0.4849π (L = 60) down to 0.4395π (L = 240), such that condition
(2.5) holds in each case.
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Figure 7: Cluster-size scaling for the 2d Heisenberg model with the constraint action on square lattices.
Scaling works for neutral clusters (left) and for merons (right) with the fractal dimension D' 1.88.

The bulk data scale accurately, but again the tiny clusters deviate from the smooth scaling
curve. In contrast to the quantum rotor, here this happens not only for the neutral clusters but also
for the merons. In these simulations, clusters with |Qcluster| ≥ 1 were rare, below 0.022%.

At this point, we switch to data obtained from a triangular lattice, with the constraint angle
δ = 2π/3, plus the term of the standard action, where β is tuned for the suitable correlation length.
Here we keep the ratio L/ξ = [xyz] fixed.

Fig. 8 shows the regime of very small neutral clusters and merons. The data for tiny clusters
are affected by lattice artifacts, but beyond that regime we observe power-laws, which allow for
a continuum extrapolation. We see that the abundance of neutral clusters diverges ∝ 1/s̄2, where
s̄ = s/ξ 1.88 is the rescaled cluster size, while the meron frequency diverges ∝ 1/s̄. Even without
considering clusters of higher charges, 〈Q2〉 therefore diverges logarithmically, according to the
integral over the meron density. The term χtξ 2 = 〈Q2〉(ξ/L)2 diverges in the same manner, since
we keep the ratio L/ξ constant. This observation reveals the reason for this notorious divergence.

The few cluster with higher topological charge enhance χt further. In Fig. 9 (left) we show
histograms for clusters with |Q| = 1: they are roughly compatible with the fractal dimension D =

1.88, but the convergence to a continuum scaling curve is clearly slower when the lattice becomes
finer. Here the suppression of tiny clusters is strong, but their number keeps increasing on finer
lattices, hence it is conceivable that also their density is UV divergent in the continuum limit.

We proceed to an alternative evaluation of the fractal dimension D in terms of the gyration
radius Rg [20]. Its definition and its relation to s and D are given by

R2
g =

1
2s2 ∑

x,y
(~ex−~ey)

2 , s ∝ RD
g , (5.1)
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3d-O(4): 2nd order fix-point

I Continuum Limit at constant coupling

I Natural self-similarity

I Clusters fractal dimension D ≈ 2.485
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3d-O(4): Cluster Size Distribution
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3d-O(4): Status

I Topological sectors not yet separated

I Fix-point may not be accessible with infinte action barriers
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Outlook

2d-O(3):

I Determining distributions for higher charges Q = 1, . . .

I Requires mores statistics, smaller cutoff

I Determining the origin of the divergent topological

suszeptibility χt = 〈Q2〉 → ∞
I Theoretical explanation for pseudo-fractality

3d-O(4):

I Investigate separation of topological sectors
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Thank you for your attention
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